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In this structure (Fig. 1) the cadmium ions have roughly 
octahedral coordination. The octahedra occur in pairs, each 
pair sharing the face which lies in the mirror plane. All 
octahedra share edges with both neighbours in the e direc- 
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tion. Finally, the infinite double strings thus formed share 
corners with 4 neighbouring strings. Hydroxyl groups (1), 
(2) and (3) are bonded to 4, 2 and 3 cadmium ions respec- 
tively. The bond distances are given in Fig. 1. 

The r.m.s, errors in the positions are estimated to be 
0.04 A for the oxygen atoms and 0.01/~ for cadmium. The 
deviations of z from 0 or ½ are insignificant except for 
OH(2). This deviation was already apparent as an elon- 
gation of the corresponding maximum in the difference 
Fourier synthesis. It is the only structural aspect preventing 
the symmetry from becoming orthorhombic (12mm); its 
cause may be a constraint resulting from the - unknown 
- proton configuration. 

I wish to thank Dr Oswald for valuable criticism, Drs 
Visser and Ir W.Peterse for taking care of all automatic 
computations, and Ir B. Tideman for his cooperation in the 
early stages of this investigation. 
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Fig. 1. Bond lengths (]4). 
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The breadths of X-ray diffraction lines which are used in 
the Scherrer equation for computing the sizes of small 
crystals are usually either the half-breadth or the integral 
breadth. Recently, it was proposed by Pitts & Willets (1961, 
1965) that the standard deviation be used. They defined 
the breadth as twice the standard deviation, 2a, which is 
obtained from the variance, a2. The variance is defined by 
the equation: 

l~_ooy2I(y)dy 
a 2  = l y, 

in which I is the X-ray intensity and y is twice the Bragg 
angle. Since the theoretical diffraction functions for small 
crystals have asymptotic values of (l/y2) at large values of y 
(Wilson, 1962), the variance and standard deviation do not 
have finite values. If the range of integration is restricted 
to a finite value, then this difficulty can be avoided. Using 
this approach, Tournarie (1956) discussed some theoretical 
aspects of the use of the variance as a measure of line 

breadth. He required that the breadth be expressed in terms 
of a2/L, where the integration was restricted between the 
specific limits - L  and +L.  Langford & Wilson (1963) 
used a variance measurement of line breadth for specific 
ranges of integration for a few reflections from metal pow- 
ders. Their preliminary measurements on line profiles at 
small Bragg angles indicated that the variance function 
could be made linear as a function of the range of integra- 
tion over a considerable change in the range of integration 
but only by properly choosing the background level. It is 
evident that the approach taken by Langford & Wilson is 
workable, but it is not clear that the added effort leads to 
more reliable results than are obtained by using the simpler 
half-breadth or integral breadth. 

The approach used by Pitts & Willets to achieve finite, 
reproducible values of standard deviation was simply to set 
subjectively a baseline (for zero intensity). Since no theo- 
retical values of the Scherrer coefficient were available for 
this procedure, they deduced an empirical value of 1.44 for 
small monodisperse cubes whose size was known from 
electron-microscopic measurements. The amount of error 
which can enter this subjective type of measurement will 
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be indicated by the following computation which shows 
that the correct Scherrer coefficient for this measurement 
is actually 0-69. This conclusion is based on the fact that 
for small cubes the diffraction function for h00 reflections 
is given by Murdock (1928, 1930, 1943) as l(y)=sin2(ay)/ 
(ay)2. This function goes to zero at y =  + n/a. Although 
there are additional peaks at larger values of y, none of 
them is as high as 5 % of the primary maximum. On this 
account, it would only be reasonable experimentally and 
theoretically to terminate the variance integral at the limits 
y = +_ n/a. Such a diffraction function has breadths which 
are 2a = 1.05 x 2/a, /~1/2 = 1"38 x 2/a, and fll = 1"44 x 2/a. 
Since the Scherrer coefficient for the half-breadth for this 
case is given by Murdock (1930) as 0"90 and for the integral 
breadth by Stokes & Wilson (1942) as 1.00, then the Scher- 
rer coefficient for the standard deviation measurement 
should be (by eliminating ,~/V 1/3 COS 0 from the Scherrer 
equations) K1/22a/~l/2 = 0.69, compared to Murdock's value, 
and Kz2cr/flx= 0"73, compared to Stokes & Wilson's value. 
The slightly larger value obtained by using the Scherrer 
coefficient given by Stokes & Wilson is caused mostly by 
our neglecting the area lost from the integral breadth by 
truncation. The value 0.69 is remarkably different from 
the value given by Pitts & Willets (1961, 1965) of 1"44. 
Although they consider that the consistency of their ex- 
perimental results shows the standard-deviation method to 
be suitable for line-broadening measurements, the discrep- 
ancy between the value of 1.44 for the Scherrer coefficient 
and our computed value of 0.69 shows what a large sub- 
jective factor there may be in the experimental determina- 
tions. 

Table 1. Line breadths for Cauchy function with baseline 
placed at different heights 

Line breadth 
Baseline 

position, T fll/2 fll 2tr 
+_3/a 1.81 x 1/a 2.11 x 1/a 1.89 x 1/a 
+_ 4/a 1"88 2.31 2.28 
+ 5/a 1 "93 2"46 2.62 
+ e<~ 2-00 3"14 oo 

Uncertainty of the baseline position in determinations 
of line breadth is frequently the source of some error. The 
extent to which uncertainty in the baseline may affect the 
determination of line breadth can be illustrated by any of 
a number of functions. For this purpose we choose the 
Cauchy distribution, I (y )=  1/(1 +a2y2), which was found 
by Schoening and his co-workers (1952) to represent quite 
accurately the shape of their corrected experimental dif- 
fraction lines. Such a curve is shown in Fig. 1. The integral 
breadth and half-maximum breadth of this function are 
easily obtained but the variance does not have a finite 
value. However, if the baseline is moved up slightly, a 
truncated Cauchy function results which does have a finite 
value of variance. Such a function may be written as 
I(y, T)= 1/(1 +a2y2)-  1/(1 +a2T2) for values of y in the 
interval - T<y  < T, and the value is made zero when y is 
not in this interval. The various values of line breadth ob- 
tained from this function are given in Table 1. It is seen 

that the half-breadth changes by only a small amount with 
different values of T, the value of integral breadth changes 
somewhat more, and the standard deviation changes quite 
rapidly. Since the position of the baseline is always some- 
what uncertain in a diffraction experiment, a preference for 
the use of the half-breadth rather than the integral breadth 
has been expressed for the cases of recording the diffraction 
lines both photographically (Berry, 1947) and by a Geiger 
counter (Alexander & Klug, 1950). Since the value of the 
standard deviation depends so strongly on the position of 
the baseline, it appears to be the least reliable method of 
measuring line breadth. 

In view of the subjective nature of the standard deviation 
as a measure of line breadth and the consequent uncertainty 
in the value of Scherrer coefficient which is to be used, it 
is concluded that the method is not as satisfactory as other 
methods for measuring the breadths of diffraction lines. 
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Fig. 1. The Cauchy distribution: I(y)=l/(1 +a2y2). The half- 
intensity breadth, Pl/2, and integral breadth, ill, have finite 
values; but the standard deviation is infinite, except when 
the interval of integration is restricted by setting the baseline 
at values of I(y) where y = 3/a, 4/a, 5/a etc. 


